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Abstract. In this communication we present the 

discussion which exists in the literature related 

to Archimedes’s demonstration of the law of the 

lever. One important aspect of the argument 

concentrates on the meaning of his postulates. In 

order to clarify this whole subject, we analyze 

what consequences would arise if nature 

followed a different law of the lever. We 

concentrate, in particular, in the case of a torque 

proportional to the square of the distances of the 

bodies to the fulcrum. We consider not only a 

linear lever but also a horizontal triangle which 

can rotate around a horizontal axis parallel to 

one of its sides.  

Keywords. Archimedes, Classical Mechanics, 

Law of the Lever. 

1. Introduction 

Archimedes (287-212 BCE) demonstrated the 

law of the lever in Propositions 6 and 7 of his 

work On the Equilibrium of Planes. In an earlier 

work, [1], we quoted all his words as taken from 

Dijksterhuis’s book, [2]. In the present paper we 

quote all of them from Heath’s translation, [3, p. 

192]: “Propositions 6, 7. Two magnitudes, 

whether commensurable [Prop. 6] or 

incommensurable [Prop. 7], balance at distances 

reciprocally proportional to the magnitudes.” 

To demonstrate these results he utilized seven 

postulates, [3, p. 189-190]: “I postulate the 

following: 1. Equal weights at equal distances 

are in equilibrium, and equal weights at unequal 

distances are not in equilibrium but incline 

towards the weight which is at the greater 

distance. 2. If, when weights at certain distances 

are in equilibrium, something be added to one of 

the weights, they are not in equilibrium but 

incline towards that weight to which the addition 

was made. 3. Similarly, if anything be taken 

away from one of the weights, they are not in 

equilibrium but incline towards the weight from 

which nothing was taken. 4. When equal and 

similar plane figures coincide if applied to one 

another, their centres of gravity similarly 

coincide. 5. In figures which are unequal but 

similar the centres of gravity will be similarly 

situated. By points similarly situated in relation 

to similar figures I mean points such that, if 

straight lines be drawn from them to the equal 

angles, they make equal angles with the 

corresponding sides. 6. If magnitudes at certain 

distances be in equilibrium, (other) magnitudes 

equal to them will also be in equilibrium at the 

same distances. 7. In any figure whose perimeter 

is concave in (one and) the same direction the 

centre of gravity must be within the figure.” 

Although the concept of the centre of gravity 

appears in postulate 4, it is not defined in any 

extant work of Archimedes. Heath, Duhem, 

Stein, Dijksterhuis, Assis and many others have 

studied how Archimedes implicitly utilized this 

concept to calculate the centre of gravity of many 

figures. For references see [4] and [5]. From 

these studies it seems that Archimedes 

understood the centre of gravity to be a point 

such that if the body were suspended from that 

point, released from rest and free to rotate in all 

directions around that point, the body would 

remain at rest and would preserve its original 

position no matter what the initial orientation of 

the body relative to the ground. 

Archimedes’s demonstration of the law of the 

lever was criticized by Mach, [6]. He thought 

Archimedes’s demonstration was a fallacy due to 

the fact that, according to Mach, Archimedes had 

utilized the law of the lever in his demonstration. 

Dijksterhuis and others objected to Mach’s 

criticism, [2, p. 289-304], [4, p. 177-185]. They 

pointed out the relevance of Archimedes’s sixth 

postulate. They understood Archimedes to 

interpret “magnitudes equal to other magnitudes” 

as “magnitudes of the same weight” and 

“magnitudes at the same distances” as 

“magnitudes the centres of gravity of which lie at 
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the same distances from the fulcrum.” This 

interpretation conferred a reasonable meaning to 

the sixth postulate and removed Mach’s 

objection to Archimedes’s demonstration of the 

law of the lever.

We agree with Dijksterhuis’s points of view. 

To illustrate the crucial role played by postulate 

6 in Archimedes’s demonstration of the law of 

the lever, we consider what would be the 

consequences if nature behaved in such a way 

that the law of the lever were quadratic in the 

distances of the bodies. 

2. A generalized law of the lever 

Suppose a horizontal beam acts as a lever that 

can rotate around another horizontal axis 

orthogonal to the beam of the lever and passing 

through its fulcrum. We consider N bodies on 

one side of the fulcrum and M bodies on the 

other side. A generic body i has weight Wi, with 

its centre of gravity being suspended by the beam 

of the lever at a distance di from the fulcrum. We 

define a generic “alpha” torque  exerted by 

these bodies as 
N

i ii dW
1

 and 

M

Ni ii dW
1

. The exponent  characterizes 

the behaviour of the lever as a function of the 

distance to the fulcrum. In real life 1. In this 

work we wish to compare this normal condition 

with hypothetical situations for which 1. To 

this end we postulate what we call a generalized 

law of the lever. That is, we postulate the 

following behaviour for the lever released at rest 

horizontally, being free to rotate around the 

fulcrum: If MN , the lever remains in 

equilibrium. If MN , the set of N bodies 

inclines towards the ground. If MN , the set 

of M bodies inclines towards the ground. 

We now consider simple symmetrical 

situations of equilibrium. First we have two 

equal weights W suspended at points B and D

from a lever which can rotate around a fulcrum 

located at C between B and D. If BC = CD, the 

lever will remain in equilibrium for all values of 

. This is our configuration (I). The lever will 

also remain in equilibrium for any value of 

when the two weights W are suspended together 

at C. This is our configuration (II). That is, in 

this case we can replace the two equal weights at 

B and D of configuration (I) by a single body of 

twice the weight at the midpoint C without 

disturbing the equilibrium of the lever for any 

value of . The centre of gravity of the two equal 

weights WB and WD can be considered their 

midpoint. Archimedes proved this fact in 

Proposition 4 of his work, [3, p. 191]: “If two 

equal weights have not the same centre of 

gravity, the centre of gravity of both taken 

together is at the middle point of the line joining 

their centres of gravity.” 

Now let us see how Archimedes 

demonstrated the law of the lever considering a 

very simple case. Consider three equal weights 

suspended at points A, B, and D. The lever is free 

to rotate around the middle point B. If AB = BD,

the lever will remain in equilibrium no matter the 

value of . This is our configuration (III). Let us 

call C the midpoint of the segment BD. By 

postulate 6 we will not disturb the equilibrium of 

the lever by replacing bodies B and D by a single 

body of twice the weight acting at C. This new 

configuration (IV) is a special case of the law of 

the lever because WA/WC = BC/AB = 1/2, or BC

= AB/2.

Let us now assume that 1 and our 

generalized law of the lever. In this case the 

configuration (III) continues to be an equilibrium 

configuration, no matter the value of . But 

configuration (IV) is no longer in equilibrium. If 

1, the weights at C will incline toward the 

ground. In contrast, if 1, the weight A will 

incline toward the ground. The new equilibrium 

situation according to the generalized law of the 

lever and the definition of the “alpha” torque is 

the configuration with the equal weights WB and 

WD acting together at another point E such that 

WA/WE = (BE/AB) , that is, 
/1

2/1BE . If 

2 , ABABBE 707.02/2 . If 

0 , the solution diverges. If 2/1 , we 

have 4/ABBE .

We can go from configuration (I) to 

configuration (II) without disturbing the 

equilibrium of the lever for all values of . On 

the other hand, we can go from configuration 

(III) to configuration (IV) without disturbing the 

equilibrium of the lever only if 1. If 2 ,

we can maintain the equilibrium of the lever only 

by combining the weights WB and WD at another 

point E given by ABABBE 707.02/2 .

This last situation shows that Archimedes’s 

postulate 6, as interpreted by Dijksterhuis, would 

not be valid if 2 . This conclusion lends 

support to his interpretation of this postulate and 
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to the fact that this postulate was essential in 

order to allow Archimedes to demonstrate the 

law of the lever. 

3. Equilibrium of a Triangle 

Archimedes also demonstrated how to locate 

the centre of gravity of a triangle, [3, p. 198 and 

201]: “Proposition 13. In any triangle the centre 

of gravity lies on the straight line joining any 

angle to the middle point of the opposite side.” 

“Proposition 14. If follows at once from the last 

proposition that the centre of gravity of any 

triangle is at the intersection of the lines drawn 

from any two angles to the middle points of the 

opposite sides respectively.” 

We now consider a generic horizontal triangle 

ABC with height H and base BC. This triangle 

can rotate freely around the horizontal axis DE

which is fixed relative to the ground and is 

parallel to BC. We want to find the distance R

between this axis and the side BC that will let the 

triangle be in equilibrium for a given value of 

, with 0 < R < H.

Our generalized law of the lever implies that 

equilibrium will happen when the alpha torque 

exerted by one side of the axis, dWr , is 

equal to the alpha torque exerted by the other 

side of the axis, '' dWr . Here r and r’ are the 

distances between the rotation axis and the strips 

of weight dW and dW’ on either side of the axis.  

After performing these integrals we obtain 

that equilibrium will happen when [1]: 

0)1()2(2 kk .   (1) 

The constant k is defined by k = (H – R)/R.

For = 1 there are three solutions to this 

equation, namely, 21k , 12k  and 

13k . Only the first solution is physically 

reasonable, implying HHR 333.03/ . This 

is the usual solution of an axis passing through 

the centre of gravity of the triangle, which was 

Archimedes’s solution. To demonstrate this 

result he also utilized implicitly postulate 6.  

For  = 0, there are two solutions to Eq. (1), 

namely, 414.2211k  and 

414.0212k . Only the first solution is 

physically reasonable, leading to 

HHR 293.0414.3/ . This axis parallel to 

the side BC will not pass through the intersection 

of the medians. It will be closer to the base BC

than the previous equilibrium axis for the case 

= 1. 

For = 2, there are four solutions to Eq. (1), 

namely, 

693.01k , ik 459.1546.02

ik 459.1546.03  and 784.14k

Only the fourth solution is compatible with 

the condition 0 < R < H. We are then led to 

HHR 359.0784.2/ . This axis parallel to 

the side BC will not pass through the intersection 

of the medians. It will be closer to the vertex A

than the equilibrium axis for the case = 1. 

This conclusion shows once more that 

postulate 6 is essential to demonstrate not only 

the usual law of the lever, but also to find the 

usual centre of gravity of a triangle. If nature 

behaved with a generalized power law with 

1, the results demonstrated by Archimedes 

would not remain valid.  
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